Monatshefte für Chemie Chemical Monthly

© Springer-Verlag 1996 Printed in Austria

Regioselective Amidation of Allylic α-Hydroxyphosphonates with Nitriles: A Convenient Route to (3-Acetylamino-1-alkenyl)phosphonates

E. Öhler* and S. Kanzler

Institut für Organische Chemie der Universität Wien, A-1090 Wien, Austria

Summary. Reaction of dialkyl (1-hydroxy-2-alkenyl)- and (1-hydroxy-2-cycloalkenyl)phosphonates (1) with acetonitrile in the presence of trifluoromethane sulfonic acid (TfOH) affords regiospecifically and with high (E)-stereoselectivity the 1,3-transposed acetamides 3 in modest to good yields.

Keywords. Dialkyl (1-hydroxy-2-alkenyl)phosphonates; Dialkyl (3-acetylamino-1-alkenyl)phosphonates; 1,3-Transposition; *Ritter* reaction.

Regioselektive Amidierung von allylischen α-Hydroxyphosphonaten mit Nitrilen: Ein einfacher Weg zu (3-Acetylamino-1-alkenyl)phosphonaten

Zusammenfassung. (1-Hydroxy-2-alkenyl)- und (1-Hydroxy-2-cycloalkenyl)phosphonate (1) reagieren mit Acetonitril in Gegenwart von Trifluormethansulfonsäure (TfOH) in mäßigen bis guten Ausbeuten regiospezifisch und mit hoher (E)-Stereoselektivität zu den 1,3-umgelagerten Acetamiden 3.

Introduction

The synthetic utility of allylic α -hydroxyphosphonates and their ester derivatives for the 1,3-interchange of functionalities has been demonstrated in a series of recent publications [1–11] (Scheme 1). 3-Amino- and (3-hydroxyamino-alkyl)phosphonic acids have attracted considerable interest because of their unique biological properties which include herbicidal, antibiotic, and very promising neuroactivities [12]. Starting from allylic α -hydroxyphosphonates, the regioselective introduction of nitrogen to carbon-3 has previously been effected by direct substitution with hydrazoic acid under *Mitsunobu* conditions [8], as well as by *Overman* rearrangement of the corresponding trichloroacetimidic esters [9], and by the palladium(0) catalyzed amination [10] and N-hydroxyamination [11] of their acetates [10] and carbonates [11], respectively.

These pathways are all restricted to the use of secondary α -hydroxyphosphonates with $R^2 = H$ (aldehyde derivatives), tertiary 3-amination products being

available only *via* prior preparation of the corresponding α -substituted allylic 3-hydroxyphosphonates [8, 11].

In this paper we present a convenient one step 1,3-conversion of allylic α -hydroxyphosphonates *via* a modified *Ritter* reaction, yielding precisely those rearranged 3-acetylamino-substituted phosphonates that are less accessible by previous methods.

Results and Discussion

Recently, we have shown that tertiary allylic α -hydroxyphosphonates $(1, R^2 \neq H)$ are rearranged on acid catalyzed acetylation to yield regioselectively the thermodynamically more stable 1,3-transposed 3-acetyloxy derivatives [1]. During our studies on the synthetic potential of compounds 1 for the regioselective interchange of O- and N-functionalities [8, 9, 11], we observed that under the conditions of the *Ritter* reaction [13] appropriately substituted α -hydroxyphosphonates undergo smooth conversion to the corresponding rearranged acetamides 3 [14] (Scheme 2).

The starting α -hydroxyphosphonates 1 are easily available by regioselective 1,2-addition of dialkyl phosphites to α,β -unsaturated aldehydes, catalyzed by potassium fluoride [15] (compounds 1 with $R^2 = H$), or to α -enones, catalyzed by sodium methoxide at $-35 \degree C$ [1] (compounds 1 with $R^2 \neq H$).

Acetamidation with acetonitrile in the presence of trifluoromethane sulfonic acid has been investigated with a variety of substituted allylic α -hydroxyphosphonates (Table 1). The crotonaldehyde derived phosphonates **1a** and **1b** yielded only low amounts of the corresponding allylically rearranged acetamides **3**, even under forced reaction conditions (entries 1 and 2). More satisfactory results were obtained using the 3-phenyl-substituted analogues **1c** and **1d** which provided the 3-acetylamino derivatives (*E*)-**3c** and (*E*)-**3d** stereoselectively with yields of 56 and 68%, respectively

(entries 3, 4). The tertiary α -hydroxyphosphonate 1e, available from benzylidene acetone and dimethyl phosphite [1], afforded a 3:1 ratio of the transposed acetamides (*E*)-3e and (*Z*)-3e with about 70% total yield (entry 5). Application of the method to the cycloalkenone derivatives 1f-h (entries 6-8) gave good yields of the corresponding (3-acetylamino-1-cycloalkenyl)phosphonates 3f-h. Finally, the behaviour of the hydroxyphosphonates 1d and 1g was investigated in a similar reaction with benzonitrile (CH₂Cl₂, PhCN (5 equiv.), *Tf* OH (1 equiv.), 0 °C -r.t.), but yields of rearranged benzamides 4 were low in both cases (Table 1, entries 9 and 10).

Starting from secondary allylic α -hydroxyphosphonates, (3-acetylamino-1-alkenyl)phosphonates **3** have previously been synthesized by us *via* the corresponding 3-azido compounds [8]. This pathway precludes the use of 3-phenyl-substituted structures which form mixtures of 1,3-regioisomeric azides under thermodynamic control and, moreover, give vinylazides upon base catalysis [8]. α -Substituted derivatives (as, for example, the cyclohexenyl derivative **3g**) have been prepared by a modification of this pathway *via* prior conversion of **1** to the corresponding regioisomeric 3-hydroxyphosphonate. The sigmatropic rearrangement of trichloroacetimidic esters of compounds **1** to the corresponding 3-trichloroacetamides is also not applicable to tertiary allylic hydroxyphosphonates [9]. In conclusion, the new and simple acetamidation procedure, which works well with cyclic and with 3-aryl-substituted hydroxyphosphonates **1**, provides a ready access to (3-aminoalkyl)phosphonic acids less accessible *via* previous methods.

Experimental

Melting points: Kofler apparatus, uncorrected; ¹H and *J*-modulated ¹³C NMR spectra: Bruker AM 400 WB; mass spectra: Finnigan MAT spectrometer 311A connected with a Vector 2/Teknivent data system; TLC: Merck silica gel 60 F_{254} plates (visualization of alkenyl derivatives by KMnO₄/acetone spray, visualization of satd. compounds by iodine vapour); flash chromatography: glass columns

-T -	TOPOGAT	1 0 0 1 1 0 0	TOTINDITI		oudeoud (T COMMI					
Entry	1	7	Time (h) ^a	Product(s) (yield, %)	$R_{\rm f}^{\rm b}$	M.p.° (°C)	Molecular Formula	Elements calc. (fou %C	al analysis nd) %H	Ν%	MS (70 cV) m/z (%)
	la	2a	24	(E)- 3a (30)	0.38	oil ^d	$C_8H_{16}NO_4P^d$ (221.2)				
5	1b	2 a	24	(E)-3b (28)	0.25	oil	$C_{10}H_{20}NO_4P$ (249.3)	48.17 (47.89	8.10 7.95	5.62 5.48)	249 (1.5), 206 (33) 112 (33), 70 (100)
ŝ	1c	2a	26	(E)- 3c	0.16	8688	$C_{13}H_{18}NO_4P$	55.11 55.16	6.42	4.95	283 (7), 241 (53), 240 (80) 130 (100)
4	1d	2a	23	(56) (56)	0.33	8183	$C_{15}H_{22}NO_4P$	57.86 57.86	7.14	4.50 4.35)	
5	1e	2 a	24	(50) (E/Z) - $3e^{\circ}$ (68)	0.3	9	$C_{14}H_{20}NO_4P$ (297.3)	56.55 (56.30	6.79 6.48	4.71 4.56)	
9	If	2a	18	3f (84)	0.19	lio	$C_9H_{16}NO_4P$ (233.2)	51.50 (51.21	6.93 6.71	6.01 5.88)	233 (54), 190 (42), 176 (100)
7	1 g	2a	31	3g (73)	0.20	oil ^d	$C_{10}H_{18}NO_4P^d$ (247.3)				
8	41	2a	96	3h f (49)	0.22	lio	$C_{11}H_{20}NO_4P$ (261.3)	50.56 (50.23	7.73 7.60	5.36 5.24)	261 (87), 218 (55), 152 (92), 110 (100)
6	1d	2b	24	(E)-4d	0.42	135–37	$C_{18}H_{20}NO_4P$ (345.4)	62.59 (62.17	5.85 5.63	4.06 3.91)	
10	1g	2b	48	4 g * (36)	0.21	122	$C_{15}H_{20}NO_4P$ (309.3)	58.24 (58.01	6.53 6.30	4.53 4.28)	309 (80), 204 (53), 105 (100)
^a Temp h , CH_2C	. 50 °C (en 1 ₂ /aceton F)-4d.49)	try 1), 80 e = 7:3 fc	°C (entry 2 or (E)-3c, d, (E)-3d): ^d I ₀), 0 °C -r.t. (entry 3 CH ₂ Cl ₂ /acetone dentical with the a	$\frac{1}{10000000000000000000000000000000000$	entries $4-10$); E/Z)- $3e$, $(E)-44$	^b Eluents: EtOAc/Me d, CH ₂ Cl ₂ /acetone = m the corresponding (3	•OH = 5:1 fc 4:1 for 4g; ° -azido-1-alk	or (E)-3a, EtC Recrystalliza	DAc/MeOH ation from E	$= 9:1 \text{ for } (E)-3b, 3f, g,$ $tOAc/Et_2O((E)-3c, e, e)$ "The separation of the

180

E. Öhler and S. Kanzler

m.p. = 146-147 °C); ^fDimethyl (1,3-cycloheptadienyl)phosphonate (11%) and dimethyl (3-hydroxy-1-cycloheptenyl)phosphonate (20%) have been isolated as by-products; ^gDimethyl (1,3-cyclohexadienyl)phosphonate ($R_r = 0.40, 21\%$) has been obtained as by-product isomers was effected by flash chromatography with CHCl₃/MeOH (30:1) as eluent ((*E*)-3e:52%, $R_f = 0.28$, m.p. = 104–105°C; (*Z*)-3e: 16%, $R_f = 0.24$,

packed with Merck silica gel 60 (230–400 mesh). Oily dialkyl phosphonates were dried by repeated coevaporation with toluene prior to use. The secondary α -hydroxyphosphonates **1a–1d** have been prepared by the procedure of *Texier-Boullet* [15], the α -substituted and/or cyclic analogues **1e–h** have been obtained according to Ref. [1].

Synthesis of the Dialkyl (3-Acetylamino-1-alkenyl) phosphonates (3; General Procedure)

To a cold $(0-5 \,^{\circ}\text{C})$ solution of TfOH (1.50g, 10.0 mmol) in dry MeCN (20 ml), a solution of 1 (10.0 mmol) in MeCN (15 ml) is added and stirring is continued under the conditions given in Table 1. After consumption of 1 (TLC control), satd. aqueous NaHCO₃ solution (15 ml) is added with stirring, and the mixture is evaporated at reduced pressure. The residue is then dissolved in CH₂Cl₂ (100 ml), washed with a minimum amount of water (5–10 ml), dried (Na₂SO₄), evaporated, and the product(s) are purified by flash chromatography using the eluents given in Table 1.

Table 2. ¹H NMR data of compounds 3 and 4^a

Product	¹ H NMR (CDCl ₃ / <i>TMS</i>), δ (ppm), <i>J</i> (Hz)
(E)- 3b	1.28 (d, $J = 7.4$, 3 H, CH ₃ CH), 1.32 (2d, $J = 7.4$, each 3 H, POCH ₂ CH ₃), 2.01 (s, 3 H, COCH) 4.02 4.12 (m, 411, POCH) 4.71 (m, 1H, CHN) 5.76 (ddd, $L = -10.2$
	$J_{1,2} = 17.2, J_{1,2} = 2, 1 \text{ H}, 1 \text{ H}, 6.68 \text{ (ddd}, J_{2,P} = 21.7, J_{2,1} = 17.2, J_{2,2} = 4.4, 1 \text{ H}, 2 \text{ H}, 6.75$
	(d, J = 8.4, 1H, NH)
(E)- 3c	2.00 (s, 3 H, COCH ₃), 3.65, 3.68 (2d, $J = 10.8$, 10.3, each 3 H, POCH ₃), 5.78 (m _c , 1 H,
	CHN), 5.82 (ddd, $J_{1,P} = 19.7$, $J_{1,2} = 17.2$, $J_{1,3} = 2$, 1 H, 1-H), 6.88 (ddd, $J_{2,P} = 21.7$,
	$J_{2,1} = 17.2, J_{2,3} = 4.9, 1 \text{ H}, 2\text{-H}), 7.24-7.34 \text{ (m, 6 H, H}_{arom} + \text{NH})$
(E)- 3d	$1.25, 1.30 (2t, J = 7.4, each 3 H, POCH_2CH_3), 2.00 (s, 3 H, COCH_3), 3.94-4.09 (m, 4 H, COCH_3)$
	POCH ₂), 5.78 (m _e , 1 H, CHN), 5.85 (ddd, $J_{1,P} = 19.2$, $J_{1,2} = 17.2$, $J_{1,3} = 1.5$,
	1 H, 1-H), 6.85 (ddd, $J_{2,P} = 22.1$, $J_{2,1} = 17.2$, $J_{2,3} = 4.9$, 1 H, 2-H), 7.24–7.34 (m, 5 H _{aron}),
	7.38 (d, $J = 8.4, 1$ H, NH)
(Z)-3e	$1.93 (dd, J_{HP} = 13.8, J_{HH} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65, 3.71 (2d, J = 11.3, J_{HP} = 1.5, 3 H, PC-CH_3), 1.97 (s, 3 H, COCH_3), 3.65 (s, 3 H, COCH_$
	10.8, each 3 H, POCH ₃), 6.36 (m _c , 1 H, CHN), 6.39 (qdd, $J_{2,P} = 51.2$, $J_{2,3} = 9.4$, ${}^{4}J_{HH} = 1.5$,
	1 H, 2-H), 6.78 (br, d, $J = 6.4$, 1 H, NH), 7.22–7.41 (m, 5 H _{arom})
(E)- 3e	1.88 (dd, $J_{\rm HP} = 14.8$, $J_{\rm HH} = 1.5$, 3 H, PC-CH ₃), 1.98 (s, 3 H, COCH ₃), 3.61, 3.66 (2d,
	$J = 10.8$, each 3 H, POCH ₃), 5.95 (dt, $J_{3,2} = J_{3,NH} = 8.9$, ${}^{4}J_{3,P} = 3.0$ Hz, 1 H, CHN), 6.75
	(qdd, $J_{2,P} = 23.1$, $J_{2,3} = 8.9$, ${}^{4}J_{HH} = 1.5$, 1 H, 2-H), 7.22–7.33 (m, 5 H _{arom}), 7.39 (br, d, $J \approx 8$,
• <i>a</i>	1 H, NH)
3f	$1.70 (m_c, 1 H), 2.43-2.54 (m, 2 H), 2.59-2.70 (m, 1 H) (CH2), 1.98 (s, 3 H, COCH3), 5.13 (mc, 1 H) (CH2), 1.98 (s, 3 H, COCH3), 1.98 (s, 3 H, COCH3), 1.98 (s, 3 H, COCH3), 1.98 (s$
	1 H, CHN), 6.49 (qd, $J_{2,P} = 10.8$, $J_{HH} = 2.0$, 1 H, 2-H), 6.65 (br, d, $J = 7$, 1 H, NH)
3h	1.25 (m, 1 H), 1.50 (m, 1 H), 1.68–1.88 (m, 3 H), 1.98 (m, 1 H), 2.23 (m, 1 H), 2.43 (m, 1 H)
	$(H-4 \text{ to } H-7), 1.99 \text{ (s, 3 H, COCH}_3), 3.68, 3.71 (2d, J = 10.8, each 3 H, POCH}_3), 4.76 \text{ (m}_c,$
(7) 41	1 H, CHN), 6.76 (td, $J_{2,P} = 24.6, J_{2,H} \approx 3, 1$ H, 2-H), 6.96 (d, $J = 7.9, 1$ H, NH)
(<i>E</i>)-4d	3.64, 3.67 (2d, $J = 11.3$, each 3 H, POCH ₃), 5.88 (ddd, $J_{1,P} = 19.2$, $J_{1,2} = 17.2$, $J_{1,3} = 2.0$,
	1 H, 1-H), 6.00 (m _c , 1 H, CHN), 7.03 (ddd, $J_{2,P} = 22.2, J_{2,1} = 17.2, J_{2,3} = 4.9, 1$ H, 2-H),
4	1.26 - 7.50 (m, 9 H, 8 H _{arom} + NH), 7.84 (m _c , 2 H _{arom})
4g	$1.00 \text{ (m}_{e}, 1 \text{ H}), 1.75 \text{ (m}_{e}, 1 \text{ H}), 1.83 \text{ (m}_{e}, 1 \text{ H}), 2.08 \text{ (m}_{e}, 1 \text{ H}), 2.18 \text{ (m}_{e}, 2 \text{ H}) [CH2], 3.71 (2d, 1.10 \text{ CH}), 4.84 \text{ (m}_{e}, 1 \text{ H}), 2.08 \text{ (m}_{e}, 2 \text{ H}) [CH2], 3.71 (2d, 1.10 \text{ CH}), 4.84 \text{ (m}_{e}, 1 \text{ H}), 4.84 ($
	$J = 10.8$, each 5 H, POCH ₃), 4.84 (m _c , 1 H, CHN), 6.63 (dd, $J_{2,P} = 22.1, J_{2,H} \approx 2, 1$ H, 2-H),
	0.52 (d, $J = 5.4$, 1 H, NH), /.41 (m _c , 2 H _{aron}), /.48 (m _c , 1 H _{aron}), /.81 (m _c , 2 H _{aron})

^a The data of compounds (E)-3a and 3g are reported in Ref. [8]

Table 3. ¹³ C NMH	data R	of com	pounds 3	and 4	a
------------------------------	--------	--------	----------	-------	---

¹³ C NMR (CDCl ₃ , <i>TMS</i>), δ (ppm), <i>J</i> (Hz)
16.18 ($J_{PC} = 6.4$, POCH ₂ CH ₃), 19.62 (CH ₃ CH), 22.95 (COCH ₃), 46.60 (${}^{3}J_{PC} = 22.4$, CHN),
$61.77 (J_{PC} = 5.8, POCH_2), 115.68 (^{1}J_{PC} = 188.2, PC), 153.28 (^{2}J_{PC} = 5.0, C-2), 169.49 (CO)$
22.86 (CH ₃ CO), 52.37 ($J_{PC} = 5.5$, POCH ₃), 54.97 (${}^{3}J_{PC} = 22.6$, CHN), 115.69 (${}^{1}J_{PC} = 188.3$,
PC), 127.30, 128.83 (<i>o</i> , <i>m</i> -CH), 127.98 (<i>p</i> -CH), 138.84 (${}^{4}J_{PC} = 1.0$ Hz, <i>i</i> -C), 151.97 (${}^{2}J_{PC} = 5.5$,
C-2), 169.49 (CO)
16.18, 16.20 ($J_{PC} = 6.2, 6.4, POCH_2CH_3$), 22.87 (COCH ₃), 54.91 (${}^{3}J_{PC} = 22.4, CHN$), 61.86
$(J_{PC} = 5.7, POCH_2)$, 117.16 (${}^{1}J_{PC} = 187.4, PC$), 127.29, 128.78 (<i>o</i> , <i>m</i> -CH), 127.89 (<i>p</i> -CH),
139.09 (<i>i</i> -C), 150.99 (${}^{2}J_{PC} = 5.5$, C-2), 169.48 (CO)
$21.78 (^{2}J_{PC} = 10.8, PCCH_{3}), 23.22 (COCH_{3}), 51.96, 52.35 (J_{PC} = 5.6, 5.3, POCH_{3}), 52.23$
$({}^{3}J_{PC} = 6.6, CHN), 124.56 ({}^{1}J_{PC} = 172.7, PC), 126.94, 128.64 (o, m-CH), 127.48 (p-CH),$
140.77 (<i>i</i> -C), 146.73 (${}^{2}J_{PC} = 11.6$, C-2), 169.19 (CO)
$12.98 (^{2}J_{PC} = 9.4, PCCH_{3}), 22.96 (COCH_{3}), 50.64 (^{3}J_{PC} = 21.9, CHN), 52.14, 52.32$
$(J_{PC} = 5.9, 5.4, POCH_3), 125.51 ({}^{1}J_{PC} = 177.2, PC), 126.77, 128.75 (o, m-CH), 127.62 (p-CH),$
140.09 (<i>i</i> -C), 145.68 (${}^{2}J_{PC} = 10.3$, C-2), 169.37 (CO)
22.96 (COCH ₃), 31.71 ($J_{PC} = 3.0$), 31.83 (s) (C-4, C-5), 52.39, 52.53 ($J_{PC} = 6.0$, POCH ₃), 56.13
$({}^{3}J_{PC} = 22.9, CHN), 133.86 ({}^{1}J_{PC} = 189.2, PC), 147.04 ({}^{2}J_{PC} = 15.1, C-2), 169.72 (CO)$
$23.02 (\text{COCH}_3), 25.64 (J_{PC} = 6.7), 27.97 (J_{PC} = 9.1), 28.90 (s), 33.33 (J_{PC} = 2.6) (CH_2), 51.21$
$({}^{3}J_{PC} = 25.3, CHN), 52.21, 52.34 (J_{PC} = 5.9, 5.3, POCH_{3}), 130.48 ({}^{1}J_{PC} = 177.7, PC), 152.90$
$(^{2}J_{PC} = 10.2, C-2), 169.23 (CO)$
52.38 ($J_{PC} = 5.7$, POCH ₃), 55.53 (${}^{3}J_{PC} = 22.8$, CHN), 116.34 (${}^{1}J_{PC} = 188.3$, PC), 127.23,
127.41, 128.39, 128.95 (<i>o</i> , <i>m</i> -CH), 128.13, 131.62 (<i>p</i> -CH), 133.86, 138.87 (<i>i</i> -C), 151.72
$(^{2}J_{PC} = 5.8, C-2), 166.65 (CO)$
$20.11 ({}^{3}J_{PC} = 11.5, C-5), 23.97 ({}^{2}J_{PC} = 8.5, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-4), 45.63 ({}^{3}J_{PC} = 19.8, C-6), 28.41 ({}^{4}J_{PC} = 1.4, C-6), 28.41 ({}^$
CHN), 52.25, 52.35 ($J_{PC} = 5.6, 6.1, POCH_3$), 126.94, 128.25 (o, m -CH), 129.68 ($^1J_{PC} = 180.0$,
PC), 131.30 (<i>p</i> -CH), 134.11 (<i>i</i> -C), 142.67 (${}^{2}J_{PC} = 8.6, C-2$), 166.76 (CO)

^a The data of compounds (E)-3a and 3g are reported in Ref. [8]

Synthesis of the Dialkyl (3-Benzoylamino-1-alkenyl)phosphonates (4; General Procedure)

To a cold $(0-5 \,^{\circ}\text{C})$ solution of TfOH (150 mg, 1.0 mmol) and benzonitrile (515 mg, 5.0 mmol) in dry dichloromethane (3 ml), a solution of 1 (1.0 mmol) in CH_2Cl_2 (2 ml) is added dropwise. Stirring is continued for the time given in Table 1. Then, the solution is diluted with CH_2Cl_2 (10 ml), washed with satd. aqueous NaHCO₃ solution (1.5 ml) and water (2 ml), dried (Na₂SO₄), and evaporated. The products are isolated by flash chromatography on silica gel using the eluents given in Table 1.

Acknowledgements

This work was supported by the *Hochschuljubiläumsstiftung der Stadt Wien*. The authors are indebted to Mrs. S. Felsinger for measuring the NMR spectra.

References

- [1] Öhler E, Zbiral E (1991) Chem Ber 124: 175
- [2] Öhler E, Zbiral E (1991) Synthesis: 357
- Blackburn GM, Kent DE (1986) J Chem Soc Perkin Trans 1:913
 Blackburn GM, Kent DE (1981) J Chem Soc Chem Commun:511

182

Synthesis of (3-Acetylamino-1-alkenyl)phosphonates

- [4] Belykh OA, Dogadina AV, Ionin BI, Petrov AA (1985) Zh Obshch Khim 55: 1870, Engl Transl (1985): 1662
 - Cabioch JL, Denis JM (1989) J Organomet Chem 377: 227
- [5] Cooper D, Trippett S (1981) J Chem Soc Perkin Trans 1: 2127
- [6] Lu X, Tao X, Zhu J, Sun X, Xu J (1989) Synthesis: 848
- [7] Zhu J, Lu X (1987) Tetrahedron Lett: 1897
- [8] Öhler E, Kotzinger S (1993) Liebigs Ann Chem: 269 Öhler E, Kanzler S (1994) Liebigs Ann Chem: 867
- [9] Öhler E, Kotzinger S (1993) Synthesis: 497
- [10] Zhu J, Lu X (1987) J Chem Soc Chem Commun: 1318 Lu X, Sun J, Zhu J (1992) Heteroatom Chem 3: 551
- [11] Öhler E, Kanzler S (1995) Synthesis: 539Öhler E, Kanzler S (1996) Phosphorus, Sulfur, Silicon (in press)
- [12] For leading references see Ref. [9]
- [13] Krimen LI, Cota DJ (1969) Org React 17: 213
 Bishop R (1991) *Ritter*-type reactions. In: Trost BM, Fleming I, Winterfeldt E (eds) Comprehensive organic synthesis, vol 6. Pergamon Press, p 261
- [14] For recent examples of *Ritter*-type reactions with concomitant allylic rearrangement see: Kaboré IZ, Khuong-Huu Q, Pancrazi A (1978) Tetrahedron 34: 2815; Nayyar NK, Reddy MM, Iqbal J (1991) Tetrahedron Lett 47: 6965; Mukhopadhyay M, Reddy MM, Maikap GC, Iqbal J (1995) J Org Chem 60: 2670
- [15] Texier-Boullet F, Foucaud A (1982) Synthesis: 165

Received September 19, 1995. Accepted September 26, 1995